Name:

Period:

S-37, 38, 39, 40, 41, 42

Seat#:

Directions: Try these problems. If you can DO them, check the box (\square) .

If you CANNOT do them, write some notes TO YOURSELF about what you need to study to succeed at these problems.

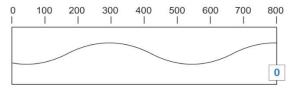
٦

Formulas and Constants									
$c = \lambda v$	E = hu	$E = \frac{hc}{\lambda}$	$E_n = -\frac{Rhc}{n^2}$	$\lambda = \frac{h}{mv}$	$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$				
c = 2.998	x 10 ⁸ m/s	h = 6.626 x	10^{-34} J·s Rhc	$= 2.18 \times 10^{-1}$	⁸ J R = 1.0974 x 10^7 m ⁻¹				

S37 – Quick Check #1

L Electromagnetic Spectrum

List all electromagnetic radiations from low energy to high.


	ROYGBV		
	Visible range		

We can see electromagnetic radiation with wavelengths between 400 nm and 700 nm.

Is 400 nm red light or violet light? Justify your answer.

Consider this graphic from the **Online Tutorial: Electromagnetic Radiation**. The scale is in nm.

What is the wavelength (λ) of this wave? _____nm Would you be able to see this wave? What is this wavelength in meters? m

Calculations

Yellow light from a sodium vapor light has a wavelength of 589 nm. Calculate the frequency of this color of yellow light in Hz.

A radio station (KPCC) has a frequency of 89.3 MHz (megahertz). How many Hz are in a MHz? What is the frequency of this radio wave in s⁻¹? What is the energy of the radio waves being emitted (in Joules)?

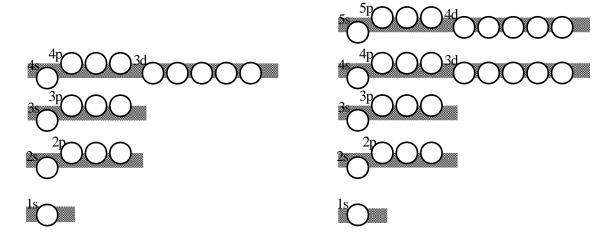
S38 – Quick Check #2

Calculations

Calculate the energy of level n=3 of the hydrogen atom.

Calculate the energy and wavelength of light emitted when an electron drops from level n=5 to n=2. What color will this light be?

A runner with a mass of 50.0 kg moves at a velocity of 2.00 m/s. Calculate her deBroglie wavelength as she moves?

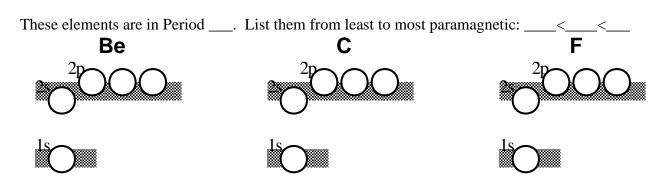

S39 – Quick Check #3

Would Vanadium be considered to be an s-block, p-block, d-block or f-block element?

Struggled? Got some wrong? Do some self-study!

Correctly fill in one of the diagrams below for Manganese ion (Mn^{2+}) , which has ______ electrons. Correctly fill in one of the diagrams below for Molybdenum, Mo, which has ______ electrons.

Periodicity


Looking at the periodic table, shade in a "period" red. Shade in a "group" blue.

1																	2
H																	He
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											AL	Si	Р	S	а	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Tī	V	α	Mh	Fe	Co	N	Qu	Zh	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	R	53	54
Rb	Sr	- Y	Zr	Nb	Mb	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hľ	Ta	W	Re	Os	lr	Pt	Au	Hg	П	Pb	Bi	Po	At	Rn
87	88	8															
Fr	Ra	Ac															
		58	59	60	61	62	83	64	65	89	67	88	69	70	71		
Lantharides		Ce	Pr	Nd	Ρm	Sm	Eu	Gd	Τb	Dy	Ho	Er	Tm	Yb	Lu		
			90	91	89	83	94	95	96	97	98	99	100	101	102	103	
Actinides		Th	Pa	U	Nþ	Pu	Am	Cm	Bk	a	Es	Fm	Mt	No	Г		

What is the difference between a "group" and a "family"?

S40 – Quick Check #4

Paramagnatism

S41 – Quick Check #5

Periodic Trends (Periodicity)

Write the equation for the first ionization energy of Be. What is the phase of Be? ____ (g)/(l)/(s)

14

15

Write the equation for the first ionization energy of F.

	17	15	
Looking at the four elements to the right, which of these elements.		Р	
Which would have the <i>largest</i> atomic size?	28.09	30.97	
	32	33	
What is your <i>explanation</i> for your answer above?	Ge	As 74.92	
what is your <i>explanation</i> for your answer above.	72.59	74.92	

If beryllium turned into an ion, would the size of that ion be bigger or smaller than neutral Be? Explain.

S42 – Quick Check #6

Mixed Problems

Write the ground state electron configuration (short form or long form) for an arsenic atom.

What **ion charge** would As be expected to form?

The ion would be named ______

Write the electron configuration for the ion.